College of Engineering Department of Civil Engineering

	CE 524 Sediment Transport			
Credit and Contact hours	3 / 3 (Lectures), 0 (Tutorials), 0 (Laboratory)			
Required, or Elective	Elective			
Course Description	This course covers basic laws governing sediment-particle fall velocity, particle- size analysis, incipient motion, bed forms, bed load, suspended load, and natural river processes. Classic and modern sediment-transport theories, sediment transport predictors, sediment yield, and reservoir sedimentation will also be discussed.			
Prerequisites or Co- requisites	None			
Course Learning Outcomes	Students completing this course successfully will be able to:			
	Course Learning Outcomes (CLOs)	Related Student Outcomes (SO)		
	CLO1. Discuss and explain sediment cascading and effects of human and natural change on sediment pathways. K1	SO1		
	CLO2. Recognize the basic concepts of sediment mechanics and sediment processes. K1	SO1		
	CLO3. Develop and analyze selected methods and software for estimating erosion and sediment transport rates. S1	SO2		
	CLO4. Perform and demonstrate the obtained results through a project, (i.e., sediment transport predictors, sediment yield, and reservoir sedimentation, as a case study). V1	SO6		
	SO 1 Recognize advanced engineering knowledge, concepts, and techniques to identify, interpret, and analyze complex and real-life engineering problems.			
Student Outcomes related to this	 SO 2 Provide solutions for complex and real-life engineering problems. SO 2 Provide solutions for complex and real-life engineering problems through critical thinking and the use of modern engineering tools, and identify their impact on social, global, cultural, environmental, safety, and economic factors. 			
Course	SO 6 Demonstrate scientific integrity, ethical responsibility, and academic values in scientific publications, research projects, and thesis work.			

	List of Topics		Related CLOs
Topics Covered	1. Characteristics of sediment and sediment cascading		CL01,2
	2. Fluid properties; conservation laws; fluid constitutive properties		CLO 2
	3. Soil properties and characterization relevant to erosion; rainfall and runoff		CLO 2,3
	4. Fluid forces on particles; intro to critical shear stress; detachment and transport processes		CLO 2,3
	5. Sheet and rill erosion; excess shear-stress; stream-power		CLO 3
	6. Erosion control principles and structures		CLO 3,4
	7. Gully mitigation		CLO 3,4
	8. Sediment delivery to channels& storage		CLO 1
	9. Open-channel hydraulics; Saint-Venant equation		CLO 2.3
	10. Fluvial geomorphology; Lane's balance; channel evolution		CLO 1,2
	11. Shields criteria & incipient motion; bed load transport relationships		CLO 2
	12. Runoff routing; flow duration; hydraulic geometry		CLO 3,4
	13. Sediment transport; composite and partitioned sediment rating curves		CLO 3,4
	14. Storage timescales; reservoir sedimentation		CLO 4
	15. Method to predict sediment transport process in watersheds.		CLO 3,4
Textbook(s) and Other Required	 Egashira, S. (2009): Mechanics of Sediment Transportation and River Changes. Garcia, M., 2008, Sedimentation Engineering, ASCE manual No. 110. 		
Material			
Grading System	Participation and Discussions	10%	
	Assignments	25%	
	Mid-term exams	25%	
	Final Exam	40 %	
Instructors	Dr. Mohamed Elmohawis		
Date of Review	March, 2025		